FATORAÇÕES E PRODUTOS NOTÁVEIS

Fatorações e produtos notáveis
1. \((x + y)^2 = x^2 + 2xy + y^2\)
2. \((x - y)^2 = x^2 - 2xy + y^2\)
3. \((x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\)
4. \((x - y)^3 = x^3 - 3x^2y + 3xy^2 - y^3\)
5. \(x^2 - y^2 = (x - y)(x + y)\)
6. \(x^2 + y^2 + z^2 + 2xy + 2yz + 2zx = (x + y + z)^2\)
7. \(x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \ldots + y^{n-2}x + y^{n-1})\)
8. \(x^{2m+1} + y^{2m+1} = (x + y)(x^{2m} - x^{2m-1}y + \ldots - y^{2m-1}x + y^{2m})\)
9. \(x^3 + y^3 + z^3 + 3(x + y + z)(x + y)(y + z)(z + x) = (x + y + z)^3\)

EXEMPLO 1. Se \(x + y = xy = 3\), encontre \(x^3 + y^3\).

Solução: Veja que:
\[
27 = (x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3 = x^3 + 3xy(x + y) + y^3 = x^3 + y^3 + 27.
\]

Logo, \(x^3 + y^3 = 0\).

Exercícios

EXERCÍCIO 1. Fatore as expressões:
1. \(ax - bx + 2a - 2b\)
2. \(10x^2 + 15xy - 4x - 6y\)
3. \(10ab - 2b + 15a - 3\)
4. \(36a^2x^2 - b^2y^2\)
5. \(a^2b - b^3\)
6. \(x^3 - x\)
7. \(x^3 + 4x^2 + 4x\)
8. \(9x^2 + 12x + 4\)
9. \(m^2 + 5m - 14\)
10. \(x^2 + x - 6\)
11. \(a^2 - 4a + 4 - b^2\)
12. \(x^2 - 2xy + y^2 - 9\)
13. \(a^3 - 7a^2 + 7a + 15\)
14. \(ab(a + b) - bc(b + c) + ac(a - c)\)
15. \(4a^2 - 12ab + 5b^2\)
16. \(a^4 - 10a^2 + 169\)

Problemas

PROBLEMA 1. A soma de dois números é 4 e seu produto é 1. Encontre a soma dos cubos desses números.
(Dica: Veja o exemplo 1.)

PROBLEMA 2. Seja \(x\) um número real tal que \(x + \frac{1}{x} = 2\), calcule \(x^2 + \frac{1}{x^2}\).

PROBLEMA 3. Qual a forma mais simplificada da expressão \((-a - b)^2 + (-a + b)^2 + 2(a - b)(b - a)\)?

PROBLEMA 4. Se \(x = 5 + 3\sqrt{2}\), encontre \(y\) tal que \(xy = 1 + \frac{1}{x}\) e determine \(x + 7y\).

PROBLEMA 5. Simplifique a expressão \((\sqrt{5} + \sqrt{6} + \sqrt{7})(\sqrt{5} + \sqrt{6} - \sqrt{7})(\sqrt{5} - \sqrt{6} + \sqrt{7})(\sqrt{5} - \sqrt{6} - \sqrt{7})\).

PROBLEMA 6. Sejam \(a\) e \(b\) números reais tais que \(a \cdot b = 1\). Mostre que o produto \((a - \frac{1}{a}) \cdot (b + \frac{1}{b})\) é igual a \(a^2 - b^2\).

PROBLEMA 7. Verifique que se \(\frac{a}{b} > 1\) então \(\frac{a + c}{b + c} < \frac{a}{b}, a > 0, b > 0, c > 0\).

(Dica: Basta verificar que \(b(a + c) < a(b + c)\).)

PROBLEMA 8. Determine qual é o maior dos dois números \(\frac{123456 + 10^{999}}{123457 + 10^{999}}\) e \(\frac{123458 + 10^{999}}{123457 + 10^{999}}\). (Dica: Use o problema anterior.)

PROBLEMA 9. Encontre o quociente da divisão de \(a^{128} - b^{128}\) por \((a^{64} + b^{64})(a^{32} + b^{32})(a^{16} + b^{16})(a^8 + b^8)(a^4 + b^4)(a^2 + b^2)(a + b)\)

PROBLEMA 10. Verifique que o número \(44\ldots4 \text{ 88}\ldots8 \text{ 9}\) é um quadrado perfeito.
Problema 11. Racionalize a expressão

\[\frac{1}{(1 + \sqrt{2})(1 + \sqrt{2})(1 + \sqrt{2})(1 + \sqrt{2})(1 + \sqrt{2})} \]

Problema 12. Se \(x + y + z = 0 \), encontre o valor de \(x^3 + y^3 + z^3 - 3xyz \). (Dica: Use a fatoração do item 9.)

Problema 13. Calcule o coeficiente do termo em \(x^3 \), no desenvolvimento de \((2x - 3)^4(x + 2)^5 \).

Problema 14. Qual é o menor inteiro positivo \(n \) tal que \(\sqrt{n} - \sqrt{n-1} < 0,01? \)

(Dica: veja que \(\sqrt{x} - \sqrt{y} = \frac{x - y}{\sqrt{x} + \sqrt{y}} \))

Problema 15. Resolva a equação \(\sqrt{x+9} - \sqrt{x-9} = 3 \).

https://sites.google.com/site/matufba/
Grupo no Facebook: Cálculo A - UFBA